skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thoi, V Sara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hybrid materials combining the optoelectronic absorption and tunability of quantum dots (QDs) with the high surface area, chemical functionality, and porosity of metal-organic frameworks (MOFs) are emerging as systems with unique optoelectronic properties relevant to applications in catalysis, sensing, and energy conversion and storage. A key component of the electronic interaction between QDs and MOFs is the transfer of charge between the two materials. This review examines the mechanisms driving charge transfer at the QD/MOF interfaces and the effects that both physical and chemical composition have on this process. We provide an overview of the key experimental approaches, including spectroscopic and electrochemical techniques, which have been used for probing charge transfer dynamics in this hybrid system. Challenges in controlling interfacial structure, distinguishing between charge and energy transfer, and optimizing stability are also discussed. This review highlights recent work on the preparation and characterization of QD/MOF hybrid materials, as well as fundamental studies advancing the understanding of charge transfer processes that occur in these systems. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Free, publicly-accessible full text available August 6, 2026
  3. In this work, we synthesize and study the charge transfer properties of a oligosilyl coordination polymer formed from zirconium clusters. Although the synthesized disordered polymer lacks long range order, spectroscopic and computational evidence suggest that the metal-ligand bond is formed, and the principle crystallographic reflections closely match those simulated from inter-node spacings matching that of the ligand. The porous polymer allows for the incorporation of guest molecules as demonstrated by the intercalation of tetracyanoquinodimethane (TCNQ). Charge transfer is predicted from DFT and experimentally observed by infrared spectroscopy, solid-state 29Si nuclear magnetic spectroscopy, and voltammetry. 
    more » « less
  4. Free, publicly-accessible full text available November 1, 2025
  5. We present a Raman scattering spectroscopic study of boron imidazolate metal-organic frameworks (BIFs) with three different magnetic metal ions and one non-magnetic in a wide frequency range from 25 to 1700 cm−1, which covers local vibrations of the imidazolate linkers as well as collective lattice vibrations. We show that the spectral region above 800 cm−1 belongs to the local vibrations of the linkers, which have the same frequencies for the studied BIFs without any dependence on the structure of the BIFs and are easily interpreted based on the spectra of imidazolate linkers. In contrast, collective lattice vibrations, observed below 100 cm−1, show a distinction between cage and two-dimensional BIFs structures, with a weak dependence on the metal node. We identify the range of vibrations around 200 cm−1, which are distinct for each metal-organic framework, depending on a metal node. Our work demonstrates the energy hierarchy in the vibrational response of BIFs. 
    more » « less
  6. Metal–organic frameworks (MOFs) have been an area of intense research for their high porosity and synthetic tunability, which afford them controllable physical and chemical properties for various applications. In this study, we demonstrate that functionalized MOFs can be used to mitigate the so-called polysulfide shuttle effect in lithium–sulfur batteries, a promising next-generation energy storage device. UiO-66-OH, a zirconium-based MOF with 2-hydroxyterephthalic acid, was functionalized with a phosphorus chloride species that was subsequently used to tether polysulfides. In addition, a molecular chlorophosphorane was synthesized as a model system to elucidate the chemical reactivity of the phosphorus moiety. The functionalized MOFs were then used as a cathode additive in coin cell batteries to inhibit the dissolution of polysulfides in solution. Through this work, we show that the functionalization of MOF with phosphorus enhances polysulfide redox and thereby capacity retention in Li–S batteries. While demonstrated here for polysulfide tethering in batteries, we envision this linker functionalization strategy could be more broadly utilized in separations, sensing, or catalysis applications. 
    more » « less
  7. Despite great promise as next-generation high-capacity energy storage devices, lithium–sulfur batteries still face technical challenges in long-term cyclability. With their porous structures and facile synthesis, metal–organic frameworks (MOFs) are tunable platforms for understanding polysulfide redox and can serve as effective sulfur hosts for lithium–sulfur batteries. This feature article describes our design strategies to tailor MOF properties such as polysulfide affinity, ionic conductivity, and porosity for promoting active material utilization and charge transport efficiency. We also present engineering approaches for implementing MOF-based sulfur cathodes for lithium–sulfur batteries with high volumetric density and under low temperature operation. Our studies provide fundamental insights into sulfur–host interactions and polysulfide electrochemistry in the presence of porous matrices, inspiring future designs of advanced batteries. 
    more » « less